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Abstract. We establish the Alexandroff-Bakelman-Pucci estimate, the Har-

nack inequality, and the Hölder continuity of solutions to degenerate elliptic

equations of the non-divergence form

(0.1) Lu := x a11 uxx + 2
√

x a12 uxy + a22 uyy + b1 ux + b2 uy = g

on x ≥ 0, with bounded measurable coefficients. We also establish similar

regularity results in the parabolic case.

1. Introduction

This paper concerns with the regularity of solutions to degenerate parabolic

equations of the non-divergence form

(1.1) Lu := x a11 uxx + 2
√
x a12 uxy + a22 uyy + b1 ux + b2 uy − ut = g

on x ≥ 0, with bounded measurable coefficients which satisfy the weak ellipticity

condition

(1.2) aijξiξj ≥ λ |ξ|2

and the lower bound b1 ≥ c > 0. More precisely, we will establish the Alexandroff-

Bakelman-Pucci estimate, the Harnack inequality, and the Hölder continuity of

solutions to equation (1.1), generalizing the classical by now result of Krylov and

Safonov [KS] and Tso [T], for the strictly parabolic case.

The existence of regular solutions to the Dirichlet problem of (1.1) has been

shown by Kohn and Nirenberg in [KN] and, for a more general class of equations

with smooth coefficients, by Lin and Tso in [LT]. In both [KN] and [LT] their

authors also established global L2-estimates of solutions of (1.1) in suitable weighted

Sobolev norms. The applications of such degenerate problems to probability theory

[F1][F2] was commented in [KN].
1
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Our motivation for the study of (1.1), besides its own interest, arises from the

regularity question of the free-boundary problem associated with the Gauss Cur-

vature flow with flat sides. This is the flow describing the deformation of a weakly

convex compact surface Σ in R3 by its Gaussian Curvature [H], [DH1]. If the initial

surface Σ has flat sides, then the parabolic equation describing the motion of the

hypersurface becomes degenerate where the curvature becomes zero. Hence, the

junction Γ between each flat side and the strictly convex part of the surface, where

the equation becomes degenerate, behaves like a free-boundary propagating with

finite speed. Assuming that the surface Σ near the interface is represented by a

graph z = f(x, y, t), the function f evolves by the fully nonlinear equation

(1.3) ft =
detD2f

(1 + |Df |2)3/2

with the flat side Σ1(t) = {(x, y, t)|f(x, y, t) = 0}. Daskalopoulos and Hamilton

[DH1], showed the existence of a C∞-smooth up to the interface solution of (1.3),

under the initial assumption that g =
√

2f vanishes linearly at the interface and

hence the equation for g(x, y, t) =
√

2f(x, y, t) has a linear degeneracy. A simple

local coordinate change from (x, y, g(x, y, t)) to (h(z, y, t), t, z) transforms the free-

boundary g = 0 into the fixed hyperplane z = 0. Moreover, h satisfies the fully-

nonlinear equation of

(1.4) ht =
z(h2

zy − hzzhyy) + hzhyy

(z2 + h2
zz

2h2
y)3/2

and its linearized equation satisfies a degenerate equation of type (1.1), under suit-

able conditions. The short time existence of a smooth up to the interface solution

z = g(x, y, t) in [DH1] is based on C2,α a-priori Schauder estimates for solutions of

(1.1) with Cα-coefficients.

In [DL2], the authors have recently shown that the function z = g(x, y, t) will

remain smooth up to the interface, for all time 0 < t < Tc, with Tc denoting the

vanishing time of the flat side. By means of first and second a-priori derivative

bounds it is shown in [DL2] that each first order derivative of z = h(x, y, t) satisfies

an equation of the form (1.1). Therefore, the Hölder continuity Theorem 3.1 in

Section 3, implies that h is of class C1,α, which constitutes the basic regularity

estimate in [DL2].
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Similar regularity questions arise in the free-boundary problem associated to the

Porous medium equation [DH2], [K]

(1.5) ft = f ∆f + ν|Df |2, ν > 0

satisfied by the pressure f of a gas through a porous medium. Indeed, Daskalopou-

los, Hamilton and Lee [DHL] showed the all-time C∞ regularity of solutions to (1.5)

with root concave initial data, based on the Hölder a’priori estimate of solutions to

degenerate equations of the divergence form

(1.6) xn∆Rn−1u− x−σn ∂xn(x1+σ
n aj∂ju)− ut = g.

Such an estimate was shown by Koch in [K], by a Moser’s iteration argument,

appropriately scaled according to a singular metric. Local a’priori C2,α-estimates

for degenerate equations of the form

(1.7) Lu := x ( a11 uxx + 2a12 uxy + a22 uyy) + b1 ux + b2 uy − ut = g

with Cα-coefficients satisfying the ellipticity condition (1.2) and the lower bound

b1 ≥ c > 0, was shown in [DH2], as the main step on establishing the short time

existence of a smooth up to the interface solution of (1.5) with suitable C2,α ini-

tial data. Because of the degeneracy of the equation, all the estimates are scaled

according to the an appropriate singular metric.

All the above results generalize in dimensions n > 2. The question of Cα-

regularity of solutions to (1.7) with bounded measurable coefficients satisfying (1.2)

and b1 ≥ c > 0 is still an open problem. One also may ask similar questions on

various types of degeneracies of the type

(1.8) Lu :=
n∑
i=1

xαixαjaijuii +
n∑
i=1

biui + cu− ut = g.

Let us also mention that the Cα, C1+α and C2+α regularity of solutions to

degenerate elliptic equation of the type of (1.7) in the case that b1 ≤ 0 has been

established by Lin and Wang in [LW].

We will assume throughout this paper that the coefficients of the operator L in

(1.1) satisfy the bounds

(1.9) aijξiξj ≥ λ|ξ|2, ∀ξ ∈ R2 \ {0}

and

(1.10) |aij |, |bi| ≤ λ−1
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and

(1.11)
2b1
a11
≥ ν > 0

for some constants 0 < λ < 1 and 0 < ν < 1.

In Section 2 we will establish the Alexandroff-Bakelman-Pucci estimate, the Har-

nack estimate and the Hölder continuity of solutions to the corresponding elliptic

equations

(1.12) Lu := x a11 uxx + 2
√
x a12 uxy + a22 uyy + b1 ux + b2 uy = g

under the same assumptions (1.9)-(1.11) on its coefficients. In Section 3 we will

show how one can generalize these results to the parabolic case. Since most of

the proofs will be similar to the elliptic case, we will only draft the proofs of the

parabolic results.

Let us also emphasize that all our proofs generalize to higher dimensions n ≥ 3.

2. The Elliptic Case.

Let (x0, y0) be a point in R2, with x0 ≥ 0. For any number r > 0, let us denote

by Cr(x0, y0) the cube

Cr(x0, y0) = {(x, y) : x ≥ 0, |x− x0| ≤ r, |y − y0| ≤ r }.

Let us also denote by µ the measure

(2.1) dµ = x
ν
2−1 dx dy.

Our goal is to prove the following result:

Theorem 2.1. Assume that the coefficients of the operator L are smooth on Cρ(x0, y0),

ρ > 0, and satisfy the bounds (1.9) and (1.11). Then, there exist a number

0 < α < 1 so that, for any r < ρ

‖u‖Cαs (Cr(x0,y0)) ≤ C(r, ρ)

(
‖u‖C◦(Cρ(x0,y0)) + (

∫
Cρ
g2 dµ)1/2

)
for all smooth functions u on Cρ(x0, y0) for which Lu = g.

From now on we will assume that the operator L satisfies conditions (1.9) and

(1.11). Throughout this section we will denote by s the variable

s =
√
x.
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The operator L can be expressed in the (s, y) variables as

Lsu :=
a11

4
uss + a12usy + a22uyy +

a11

4s
[
2 b1
a11
− 1]us + b2uy

and hence introducing the new elliptic coefficient matrix
ã11 ã12

ã12 ã22

 =


a11
4

a12
2

a12
2 a22


the operator Ls takes the form

(2.2) Lsu = ã11 uss + 2ã12 usy + ã22 uyy +
ã11

s
[
b1

2 ã11
− 1]us + b2 uy.

The matrix ãij satisfies

(2.3) λ̃|ξ|2 ≤ ãijξiξj ≤ λ̃−1|ξ|2, ∀ξ ∈ R2 \ {0}

with λ̃ = λ/4 and

(2.4) |bi| ≤ λ−1 and
b1

2 ã11
≥ ν > 0

with 0 < ν < 1. We will also denote by L̄s our model operator

L̄su = uss + uyy + (ν − 1)
us
s

which may also be expressed in the form

L̄su = s1−ν [sν−1 us]s + uyy.

2.1. Alexandrov-Bakelman-Pucci Estimate. Let us consider the new variable

z = s2−ν

2−ν . Then
dz

ds
= s1−ν

implying that

L̄su = s2(1−ν) uzz + uyy.

Pick a point (s0, y0) such that s0 ≥ 0 and for r > 0 we define the cube

Cr(s0, y0) = {(s, y) : s ≥ 0, |s− s0| ≤ r, |y − y0| ≤ r }.

Consider the gradient map Z = (uz, uy) in the (z, y) variables, and define the set

(2.5) Γ+ =
{

(s, y) ∈ Bρ :
∂(uz, uy)
∂(z, y)

≤ 0, uz ≤ 0
}
.

We will show the following Alexandrov-Bakelman-Pucci maximum principle for

solutions of the equation (1.12). Our arguments follow the ideas in the proof of
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Theorem 9.1 in [GT]. However, because of the degeneracy of equation (1.12) we

need to scale the estimates differently. To simplify the notation, we will denote in

the next two Theorems by (aij) the matrix (ãij) and by λ the number λ̃.

Theorem 2.2. Let u be a classical subsolution of equation

(2.6) Lsu := a11 uss + 2a12 usy + a22 uyy +
a11

s
[
b1

2 a11
− 1]us + b2 uy ≥ g

on Cρ = Cρ(s0, y0), ρ < 1, with coefficients satisfying conditions (2.3) and (2.4).

Assume in addition that u ≤ 0 on { |s− s0| = ρ, |y − y0| = ρ } ∩ Cρ(s0, y0). Then,

sup
Cρ

u+ ≤ C(λ, ν) ρ
1
2 ρν(s0)

1
2

(∫
Γ+

(g−)2(s, y) sν−1ds dy

)1/2

with

(2.7) ρν(s0) = (s0 + ρ)2−ν − s2−ν
0 .

Proof. Assume that u+ takes a positive maximum

M = max
Cρ

u+

at the point (s, y) and let ρν be the distance defined by (2.7). Consider the set Γ+

defined by (2.5). Let us observe that since u is a classical subsolution of (2.6), and

therefore at least C2-smooth up to x = 0, we have us = 2s ux = 0 at s =
√
x = 0

and in addition uz = sν−1 us = 2sν ux = 0 at s = z = 0. In particular, this implies

that {us ≤ 0 } = {uz ≤ 0 }. Then, a simple geometric argument shows that

D = [− cM

ρν(s0)
, 0]× [−cM

ρ
,
cM

ρ
] ⊂ Z(Γ+)

for some uniform constant c, where Z(Γ+) denotes the image of Γ+ under the

gradient map Z = (uz, uy). Hence

(2.8) |D| ≤ |Z(Γ+)| =
∫

Γ+

∣∣∣∣det
(

∂Z

∂(s, y)

)∣∣∣∣ ds dy.
On the other hand

|Z(Γ+)| =
∫

Γ+

∣∣∣∣det
(

∂Z

∂(s, y)

)∣∣∣∣ ds dy =
∫

Γ+

∣∣∣∣det
(

∂Z

∂(z, y)

)
dz

ds

∣∣∣∣ ds dy
=
∫

Γ+

∣∣∣∣det
(

∂Z

∂(z, y)

)∣∣∣∣ s1−ν ds dy =
∫

Γ+

∣∣uzz uyy − u2
zy

∣∣ s1−ν ds dy

=
∫

Γ+

∣∣∣s2(1−ν) uzz uyy − (s1−ν)2 u2
zy

∣∣∣ sν−1 ds dy

=
∫

Γ+
|detE | dµ

(2.9)
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with dµ = sν−1 ds dy and

E =

s2(1−ν) uzz s1−ν uzy

s1−ν uzy uyy

 =

uss + (ν−1)us
s usy

usy uyy

 .

Since, ∂(uz,uy)
∂(z,y) ≤ 0 on Γ+, −E ≥ 0, i.e., |detE | = det(−E). Hence, by formula

(9.10) in [GT] and (2.6), we conclude

2 [ det(aij) · det(−E) ]
1
2 ≤

(
a11 [uss +

(ν − 1)us
s

] + 2 a12 usy + a22 uyy

)−
≤

(
a11 uss + 2a12 usy + a22 uyy +

a11 [ b1
2 a11

− 1]
s

us +
a11 [ν − b1

2 a11
]

s
us

)−

≤ g− + |b2| |uy|+

(
a11 [ν − b1

2 a11
]

s
us

)−

The last term in the above estimate is actually equal to zero, since uz = us/s ≤ 0

on Γ+ and ν − b1
2 a11

≤ 0 by condition (2.4). Hence

2 [ det(aij) · | detE | ] 1
2 ≤ g− + |b2| |uy|.

Hölder’s inequality then implies the estimate

2 [ det(aij) · | detE | ] 1
2 ≤ (k2(g−)2 + |b2|2)

1
2 · (k−2 + |uy|2)

1
2

for all numbers k > 0. Using the bound det(aij) ≥ λ2 we then conclude the bound

(2.10) |detE | 12 · (k−2 + |uy|2)−
1
2 ≤ 1

2
λ−1 (k2 (g−)2 + |b2|)

1
2 .

Considering the function G on R2 defined by

G(ξ, ζ) = (k−2 + ξ2)−1,

instead of (3.4) we have the formula

(2.11)
∫
D

G ≤
∫

Γ+
G(Z)

∣∣∣∣ ∂Z

∂(s, y)

∣∣∣∣ ds dy =
∫

Γ+
(k−2 + u2

y)−1 |detE| dµ.

Combining (2.10) and (2.11) and using the bound |b2| ≤ λ−1, we obtain the estimate

(2.12)
∫
D

G ≤ 1
4λ2

∫
Γ+

(k2(g−)2 + λ−2) dµ.
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To compute the integral
∫
D
G, let us recall that D = [− cM

ρν(s0) , 0] × [− cMρ ,
cM
ρ ], so

that ∫
D

G ≥
∫ 0

−cM
ρν (s0)

∫ cM
ρ

− cMρ
(k−2 + ξ2)−1 dξ dζ

≥ c ρ

ρν(s0)

∫
B cM

ρ

(k−2 + ξ2 + ζ2)−1 dξ dζ

=
c ρ

ρν(s0)
log(1 +

c2 k2M2

ρ2
)

(2.13)

for some small constant c = c(λ, ν) > 0. From (2.12) and (2.13) we obtain

c ρ

ρν(s0)
log(1 +

c2 k2M2

ρ2
) ≤ 1

4λ2

∫
Γ+

(k2(g−)2 + λ−2) dµ.

Let us set k by k−2 = λ2
∫

Γ+(g−)2 dµ in the above estimate so that

1
4λ2

∫
Γ+

(k2(g−)2 + λ−2) dµ =
1

4λ4

(
1 +

∫
Γ+

dµ

)
≤ C(λ)

(
1 +

∫
Cρ
sν−1 ds dy

)
≤ C(λ, ν)

for some constant C = C(λ, ν). Combining the above we conclude that

ρ

ρν(s0)
log(1 +

c2 k2M2

ρ2
) ≤ C(λ, ν).

Since α = ρ
ρν(s0) ≥ 1, when s0 < 1 and ρ < 1, the estimate α log(1+x) ≥ log(1+αx)

then implies that

log(1 +
c2 k2M2

ρ ρν(s0)
) ≤ C(λ, ν).

Exponentiating, we finally obtain the estimate

M ≤ C(λ, ν) ρ
1
2 ρν(s0)

1
2

(∫
Γ+

(g−)2 dµ

) 1
2

finishing the proof of the Theorem.

Replacing u by −u in the above Theorem and defining the set

Γ− =
{

(s, y) ∈ Cρ :
∂(uz, uy)
∂(z, y)

≥ 0, uz ≥ 0
}

we obtain:

Theorem 2.3. Let u be a classical supersolution of equation

(2.14) Ls := a11 uss + 2a12 usy + a22 uyy +
a11

s
[
b1

2 a11
− 1]us + b2 uy ≤ g
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on Cρ = Cρ(s0, y0), with coefficients satisfying conditions (2.3) and (2.4). Assume

in addition that u ≥ 0 on { |s− s0| = ρ, |y − y0| = ρ } ∩ Cρ(s0, y0). Then,

sup
Cρ

u− ≤ C(λ, ν) ρ
1
2 ρν(s0)

1
2

(∫
Γ−

(g+)2(s, y) sν−1ds dy

)1/2

with ρν(s0) as in (2.7).

2.2. The Barrier Function. We will construct, in this paragraph, an important

for our purposes barrier function. A similar function was introduced by Caffarelli in

[C]. To simplify the computations in this paragraph we will go back to the original

(x, y) variables, assuming that L satisfies conditions (1.9) - (1.11). We begin by

introducing a new distance function. For a point (x0, y0) ∈ R2, with 0 ≤ x0 ≤ 1,

let us define the distance function dγ by

(2.15) d2
γ((x, y), (x0, y0)) = (

√
x−
√
x0)2 + γ2 (y − y0)2

with

γ2 =
νλ

10
.

Recall that 0 < λ < 1 is the ellipticity constant and 0 < ν < 1 the positive constant

so that (1.11) holds. Notice that in the (s, y) variables, with s =
√
x the distance

function d2
γ may be expressed as

d2
γ((s, y), (s0, y0)) = (s− s0)2 + γ2 (y − y0)2.

For r > 0, let Qr(x0, y0) denote the cube

Qr(x0, y0) = { (x, y) : x ≥ 0, |
√
x−
√
x0| ≤ r, γ |y − y0| ≤ r }

and let Bρ(x0, y0) denote the ball

Br(x0, y0) = { (x, y) : x ≥ 0, dγ((x, y), (x0, y0)) ≤ r }.

Lemma 2.4. There exists a smooth function φ on the half space R2
+ and positive

constants C and K > 1 depending only on the constants λ and ν, such that

(2.16)

φ ≥ 0 on R2
+ \ B3

√
2(x0, y0)

φ ≥ −2 in Q 3
2
(x0, y0)

and

(2.17) Lφ ≤ C ξ, on R2
+
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where ξ = ξ̄(d2) is a continuous function on Rn with 0 ≤ ξ ≤ 1 and supp ξ ⊂
Q 1

2
(x0, y0). Moreover, φ ≥ −K on R2

+.

Proof. To simplify the notation, let us set for any r > 0, Br = Br(x0, y0) and

Qr = Qr(x0, y0). Introducing the new distance function

d̄2 =
(x− x0)2

x+ x0
+ γ2 (y − y0)2.

one can easily see that

(2.18) dγ ≤ d̄ ≤
√

2 dγ

since

|
√
x−
√
x0| ≤

|x− x0|√
x+ x0

≤
√

2 |
√
x−
√
x0|.

Define the function

φ = M1 −
M2

(d̄2)α
, on B4 \ B 1

4

with α > 0 a sufficiently large constant, depending only on λ and ν, to be deter-

mined in the sequel. One can choose M1 and M2, depending on λ, ν and α, so

that

φ ≡ 0, on d̄ = 3
√

2 and φ = −2, on d̄ = 3.

Hence, by (2.18)

φ ≤ 0, on B4 \ B3
√

2 and φ = −2, on B3
√

2/2 \ B 1
4
.

It is possible to extend φ as a smooth function φ = φ̄(d̄) on R2
+ in such a way that

(2.16) holds and also Lφ ≤ 0 on R2
+ \ B4. This, in particular, will imply that

Lφ ≤ C(ν, λ) ξ, on Q 3
2
∪ (R2

+ \ B3).

Hence, it remains to show that Lφ ≤ C(ν, λ) ξ on B4 \ Q 3
2
. Since B 1

4
⊂ Q 3

2
, it is

enough to show that

(2.19) Lφ ≤ 0 on B4 \ B 1
4
.

To simplify the notation, let us set θ = d̄2, so that

φ = M1 −
M2

θα
.

A direct computation shows that

Lφ = x a11

[
αM2

θα+1
θxx −

α(α+ 1)M2

θα+2
θ2
x

]
+ a22

[
αM2

θα+1
θyy −

α(α+ 1)M2

θα+2
θ2
y

]
− 2
√
x a12

[
α(α+ 1)M2

θα+2
θx θy

]
+ b1

[
αM2

θα+1
θx

]
+ b2

[
αM2

θα+1
θy

]
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i.e.,

Lφ =
αM2

θα+1
[x a11 θxx + a22 θyy + b2 θy] + b1

[
αM2

θα+1
θx

]
− α(α+ 1)M2

θα+2

[
x a11 θ

2
x + 2

√
x a12 θx θy + a22 θ

2
y

]
Notice first that by the ellipticity condition (1.9) we have

xa11θ
2
x + 2

√
x a12 θx θy + a22 θ

2
y ≥ λ [x θ2

x + θ2
y ].

Also, by direct calculation

θx =
(x+ 3x0)(x− x0)

(x+ x0)2
and θxx =

8x2
0

(x+ x0)3

while

θy =
2νλ
10

(y − y0) and θyy =
2νλ
10

.

Hence, using again the bounds (1.9) - (1.11), we obtain

Lφ ≤ αM2λ
−1

θα+1

[
8xx2

0

(x+ x0)3
+

2 νλ
10

+
(x+ 3x0) (x− x0)+

(x+ x0)2
+

2 νλ
10
|y − y0|

]
− ναM2

θα+1

[
(x+ 3x0) (x− x0)−

(x+ x0)2

]
− 2λα (α+ 1)M2

θα+2

[
x(x+ 3x0)2(x− x0)2

(x+ x0)4
+

4ν2 λ2

100
(y − y0)2

](2.20)

Let us consider a point P = (x, y) ∈ B4 \ B 1
4
. We will show that there exists a

constant α = α(ν, λ), sufficiently large, for which Lφ ≤ 0 at P . We separate the

two cases:

Case 1: x ≤ 1
2x0. In this case, (2.20) implies that

Lφ ≤ αM2λ
−1

θα+1

[
8x
x0

+
2 νλ
10
|y − y0|

]
− ναM2

θα+1
(
3
8
− 2

10
)

− 2λα (α+ 1)M2

θα+2

[
9x
x0
· (x− x0)2

x+ x0
+

4ν2 λ2

100
(y − y0)2

](2.21)

Since dγ((x, y), (x0, y0)) ≥ 1
4 we have θ ≥ c(λ, ν) > 0. In addition

|
√
x−
√
x0|2 ≥

1
32

or
λν

10
|y − y0|2 ≥

1
32
.

When |
√
x−
√
x0|2 ≥

1
32 , one can deduce from (2.21) that

Lφ ≤ αM2

θα+1

[
8λ−1x

x0
+

2ν
10
|y − y0| −

ν

10

]
− α(α+ 1)M2

θα+1

[
c1(ν, λ)

x

x0
+ c2(ν, λ) (y − y0)2

]
≤ 0

for α sufficiently large, depending only on λ and ν. On the other hand, when The negativity come

from the condition

like x ≤ λν
100 so that

αM2
θα+1

»
8λ−1x
x0

+ 2ν
10 |y − y0| − ν

10

–
≤

0.
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λν
10 |y − y0|2 ≥ 1

32 the estimate (2.21) implies that

Lφ ≤ αM2

θα+1
[C(ν, λ)− c(ν, λ) (α+ 1)] ≤ 0

again for α = α(λ, ν) sufficiently large.

Case 2: x ≥ 1
2x0. Then for a point P = (x, y) ∈ B4 \ B 1

4
where

1
4
≤ |
√
x−
√
x0|2 +

λν

10
|y − y0|2 ≤ 4

and with x0 ≤ 1, (2.20) implies the estimate

Lφ ≤ αM2

θα+1
[C(λ, ν)− (α+ 1) c(λ, ν) ] ≤ 0

for α = α(λ, ν) sufficiently large.

The following Lemma follows by simply rescaling the function φ.

Lemma 2.5. Given ρ > 0, there exists a smooth function φρ on the half space R2
+

and positive constants C and K > 1 such that

(2.22)

φρ ≥ 0 on R2
+ \ B3

√
2ρ(x0, y0)

φρ ≥ −2 in Q 3ρ
2

(x0, y0)

(2.23) Lφρ ≤
C

ρ2
ξρ, on R2

+

where 0 ≤ ξρ ≤ 1 is a continuous function on Rn with supp ξρ ⊂ Q ρ
2
(x0, y0).

Moreover, φρ ≥ −K on R2
+.

Proof. Let φ = φ̄(d̄2) be the function constructed in the previous Lemma. Define

the function φρ by

φρ = φ̄(
d̄

ρ
).

Then, clearly φρ satisfies conditions (2.22). Moreover,

Lφρ(d) =
1
ρ2
Lφ̄(

d

ρ
)

implying condition (2.23).
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2.3. The Harnack Inequality. Fix a point (x0, y0) ∈ R2
+ and set s0 =

√
x0. Let

us now go back to the (s, y) variables ( with s =
√
x) assuming, throughout this

section, that the operator Lsu is defined as

(2.24) Lsu := a11 uss + 2a12 usy + a22 uyy +
a11

s
[
b1

2 a11
− 1]us + b2 uy

with Ls satisfying conditions (2.3) and (2.4). Denoting, for any r > 0, by Qr(s0, y0)

the cube

Qr(s0, y0) = { (s, y) : s ≥ 0, |s− s0| ≤ r, γ |y − y0| ≤ r }

we will show the following Harnack inequality for solutions to equation Lsu = g.

Theorem 2.6. Let u ≥ 0 be a classical solution of equation Lsu = g in Qρ(s0, y0),

where g is a bounded and continuous function on Qρ(s0, y0). Then,

(2.25) sup
Q ρ

2
(s0,y0)

u ≤ C

(
inf

Q ρ
2

(s0,y0)
u+ ρ

1
2 ρν(s0)

1
2 ‖g‖L2(Qρ(s0,y0),dµ)

)

with dµ = sν−1 ds dy and ρν(s0) given by (2.7).

Theorem 2.6 follows as a direct consequence of the next basic for our purposes

Lemma.

Lemma 2.7. Let u ≥ 0 be a classical solution of equation Lsu = g in Q3
√

2ρ(s0, y0),

where g is a bounded and continuous function on Q3
√

2ρ(s0, y0). Then, there exists

constants ε0 and C depending only on λ and ν, such that whenever infQ ρ
8

(s0,y0) u ≤ 1

and

ρ
1
2 ρν(s0)

1
2 ‖g‖L2(Q3

√
2ρ(s0,y0),dµ) ≤ ε0,

then supQ ρ
8

(s0,y0) u ≤ C.

Let us begin the proof of Lemma 2.7 by showing the following Corollary of

Theorem 2.3 and Lemma 2.5. In the sequel we will denote by |A|µ the normalized

measure of a set A with respect to dµ = sν−1 ds dy, namely

|A|µ =
γ ν

2

∫
A
sν−1 ds dy.

For future reference, let us notice that the measure |Qρ(s0, y0)|µ of the cube

Qρ(s0, y0) is equal to

(2.26) |Qρ(s0, y0)|µ =
γ ν

2

∫ y0+ ρ
γ

y0− ργ

∫ s0+ρ

s̄

sν−1 ds dy = [(s0 + ρ)ν − s̄ν0 ] ρ

with s̄0 = max(s0 − ρ, 0).
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Lemma 2.8. Let u be a classical supersolution of equation Lsu ≤ g in Q3
√

2ρ(s0, y0).

Then, there exist constants ε0 > 0, 0 < k < 1 and K > 1 so that if u ≥ 0 in

Q3
√

2ρ(s0, y0) with infQ 3ρ
2

(s0,y0) u ≤ 1 and

(2.27) ρ
1
2 ρν(s0)

1
2 ‖g‖L2(Q3

√
2ρ(s0,y0),dµ) ≤ ε0,

then

(2.28) | {u ≤ K } ∩Qρ(s0, y0) |µ ≥ k |Qρ(s0, y0) |µ.

Proof. To simplify the notation, we will denote for any r > 0, Qr = Qr(s0, y0)

and Br = Br(s0, y0), where

Br(s0, y0) = { (s, y) : d̄γ((s, y), (s0, y0)) ≤ r }.

Set w = u + φρ, where φρ is the barrier function of Lemma 2.5, expressed in the

(s, y) variables. Then,

Lsw ≤ g +
C

ρ2
ξρ on B3

√
2ρ

In addition, w ≥ 0 on ∂B3
√

2ρ, since u ≥ 0 on Q3
√

2ρ and φρ ≥ 0 on R2\B3
√

2ρ. Also,

infQ 3ρ
2
w ≤ −1, since infQ 3ρ

2
u ≤ 1 and w ≤ −2 on Q 3ρ

2
. Hence, infB3

√
2ρ
w ≤ −1.

We therefore can apply the ABP estimate, Theorem 2.3, to conclude that

1 ≤ inf
B3
√

2ρ

w− ≤ C(λ, ν) ρ
1
2 ρν(s0)

1
2

(∫
Γ−

(g + C ξ)2(s, y) sν−1ds dy

)1/2

with ρν(s0) given by (2.7) and

Γ− =
{

(s, y) ∈ B3
√

2ρ :
∂(uz, uy)
∂(z, y)

≥ 0, uz ≥ 0
}
, z =

s2−ν

2− ν
.

Using that 0 ≤ ξρ ≤ 1 and suppξ ⊂ Q 2
ρ
, we conclude the estimate

1 ≤ C ρ 1
2 ρν(s0)

1
2 ‖g‖L2(Q3

√
2ρ(x0,y0),dµ) + ρ

1
2 ρν(s0)

1
2
C

ρ2
|Γ− ∩Q ρ

2
|
1
2
µ .

Choosing ε0 sufficiently small so that C ρ
1
2 ρν(s0)

1
2 ‖g‖L2(Q3

√
2ρ(x0,y0),dµ) ≤ 1

2 , the

previous estimate implies the lower bound

1
2
≤ C ρ− 3

2 ρν(s0)
1
2 |Γ− ∩Q ρ

2
|
1
2
µ .

Observing also that w ≤ 0 on Γ− so that u(x) ≤ −φ(x) ≤ K, we finally conclude

the estimate

c
ρ3

ρν(s0)
≤ | {u ≤ K } ∩Q ρ

2
|µ.
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Since | {u ≤ K } ∩ Qρ |µ ≥ | {u ≤ K } ∩ Q ρ
2
|µ, to finish the proof of (2.28), it is

enough to show that for ρ sufficiently small

(2.29) |Qρ(s0, y0)|µ ≤
C ρ3

ρν(s0)
.

Indeed, using (2.26) we have

δ(ρ) :=
ρν(s0)
ρ3

· |Qρ(s0, y0)| = 2[(s0 + ρ)2−ν − s2−ν
0 ] · [(s0 + ρ)ν − s̄ν0 ]
ρ2

.

When s0 ≤ 2ρ, then

δ(ρ) ≤ 2 (3ρ)ν · (3ρ)2−ν

ρ2
≤ C(ν).

On the other hand, when s0 > 2ρ, then s0 − ρ ≥ ρ ≥ s0/2, implying that

δ(ρ) ≤ 2[(s0 + ρ)2−ν − s2−ν
0 ] · [(s0 + ρ)ν − (s0 − ρ)ν ]

ρ2
≤ C(ν) s1−ν

0 sν−1
0 ≤ C(ν)

proving (2.29), therefore finishing the proof of the Lemma.

Before we proceed with the continuation of the proof of Lemma 2.7, we will

state the following Corollary of the well known Calderón-Zygmund decomposition.

Starting with the cube Qρ(s0, y0), we split it into four cubes of half size and we

split each one of these four cubes into four other cubes of half the size. Iterating

this process we obtain cubes called dyadic cubes. If Q is a dyadic cube different

than Qρ(s0, y0), we say that Q̃ is the predecessor of Q, if Q is one of the four cubes

obtained from dividing Q̃. Recalling that |A|µ = γν
2

∫
A s

ν−1 ds dy, we have the

following Lemma:

Lemma 2.9. Let A ⊂ B ⊂ Qρ(s0, y0) be measurable sets and 0 < δ < 1 such that

(a) |A|µ ≤ δ |Qρ(s0, y0)|, and

(b) If Q is a dyadic cube such that |A ∩Q|µ > δ |Q|µ, then Q̃ ⊂ B.

Then, |A|µ ≤ δ |B|µ.

Proof. The proof of this Lemma is very similar to the standard case (see in [CC],

Lemma 4.2). We use the Calderón- Zygmund technique, following the lines of the

proof of lemma 4.2 in [CC]. By assumption we have that

|A ∩Qρ(s0, y0)|µ
|Qρ(s0, y0)|µ

=
|A|µ

|Qρ(s0, y0)|µ
≤ δ.

We subdivide Qρ into four dyadic cubes. If one of these cubes, Q, satisfies |A ∩
Q|µ/|Q|µ ≤ δ, we then split Q into four dyadic cubes and we iterate this process.
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In this way we find a family of dyadic cubes, Q1, Q2, ... (different from Qρ(s0, y0))

satisfying
|A ∩Qi|µ
|Qi|µ

> δ, ∀i

and such that if x /∈ ∪Qi, then x belongs to a infinite number of closed dyadic

cubes Q with diameters tending to zero and |A∩Qi|µ/|Qi|µ ≤ δ < 1. Applying the

Lebesgue differentiation theorem to χA with respect to the measure dµ, and using

that dµ is absolutely continuous with respect to the Lebesque measure, we deduce

that χA ≤ δ < 1 for a.e. x /∈ ∪Qi. Hence, A ⊂ ∪Qi except of a set of measure zero.

Consider the family of predecessors of the cubes Qi, and relabel them so that

{Q̃i}i≥1 are pairwise disjoint. Then, A ⊂ ∪Q̃i and from the way we chose the cubes

Qi, we have
|A ∩ Q̃i|µ
|Q̃i|µ

≤ δ, ∀i.

Since |A ∩ Qi|µ/|Qi|µ > δ and (b) holds, we have that Q̃i ⊂ B, for every i ≥ 1.

Hence

A ⊂ ∪
i≥1

Q̃i ⊂ B.

We conclude that

|A|µ ≤
∑
i≥1

|A ∩ Q̃i|µ ≤ δ
∑
i≥1

|Q̃i|µ = δ | ∪ Q̃i|µ ≤ δ |B|µ,

finishing the proof of the Lemma.

Lemma 2.10. There exist universal constants ε0 > 0, 0 < k < 1 and K > 1

so that if u ≥ 0 is a supersolution of equation Lsu ≤ g in Q3
√

2ρ(s0, y0) with

infQ 3ρ
2

(s0,y0) u ≤ 1 and g satisfies (2.27), then

(2.30) | {u ≥ Kj } ∩Qρ(s0, y0) |µ ≤ (1− k)j |Qρ(s0, y0)|µ

for j = 1, 2, 3, ....

As a consequence, we have that

(2.31) | {u ≥ t } ∩Qρ(s0, y0) |µ ≤ d t−ε |Qρ(s0, y0)|µ, ∀t > 0

where d and ε are positive universal constants.

Proof. To simplify the notation, let us denote for any r > 0 by Qr = Qρ(s0, y0).

We will proceed by induction. For j = 1, (2.30) follows from (2.28). Suppose that

(2.30) holds for j − 1 and set

A = | {u ≥ Kj } ∩Qρ |µ and B = | {u ≥ Kj−1 } ∩Qρ |µ.
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We will apply Lemma 2.9. Clearly A ⊂ B ⊂ Qρ and

|A|µ ≤ | {u > K } ∩Qρ |µ ≤ (1− k) |Qρ|µ

by Lemma 2.8. It remains to prove condition (b) in Lemma 2.9, that is we need to

show that if Q = Q ρ

2i
(s̄, ȳ) is a dyadic cube such that

(2.32) |A ∩Q|µ > (1− k) |Q|µ

then Q̃ ⊂ B. Assume the opposite, namely that there exists a point P such that

(2.33) P ∈ Q̃ and u(P ) < Kj−1.

Consider the function

ũ =
u

Kj−1
.

Then ũ satisfies

Lũ ≤ g̃, on Q3
√

2l(s̄, ȳ)

with g̃ = g/Kj−1 and l = 1/2i. Also, notice that since P ∈ Q̃ ⊂ Q 3l
2

(s̄, ȳ), we have

inf
Q 3l

2
(s̄,ȳ)

ũ ≤ u(P )
Kj−1

≤ 2.

It is easy to check that ũ satisfies all the other hypotheses of lemma 2.8, implying

that

| { ũ ≤ K } ∩Q |µ ≥ k |Q |µ

or equivalently

| {u ≤ Kj } ∩Q |µ ≥ k |Q |µ.

Hence

|Q ∩A|µ = | {u > Kj } ∩Q |µ ≤ (1− k) |Q|µ

contradicting (2.32). This finishes the proof of (2.30). The proof of (2.31) follows

immediately from (2.30) taking d = (1− k)−1 and ε such that 1− k = K−ε.

Lemma 2.11. Let u be a classical subsolution of equation Lsu ≥ g in Q3
√

2ρ(s0, y0).

Assume that g satisfies (2.27) and u satisfies (2.31). Then, there exist constants

K0 > 1 and σ > 1 such that for ε as in (2.31) and θ = K0/(K0 − 1) > 1, the

following holds: if i ≥ 1 is an integer and P = (s1, y1) is a point such that

(2.34) P ∈ Q ρ
4
(s0, y0)

and

(2.35) u(P ) ≥ θi−1K0,
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then

Qi := Qliρ(P ) ⊂ Qρ(s0, y0) and sup
Qi

u ≥ θiK0

where li = σK
−ε/2
0 θ−εi/2.

Proof. We follow the lines of the proof of Lemma 4.7 in [CC]. Take σ > 0 and

K0 > 0 such that

(2.36) (i)
1
2
σ2 >

122 d 2ε

ν
and (ii) σK

−ε/2
0 + dK−ε0 ≤ 1

6

with d and ε as in (2.27). Assuming that supQi u < θj K0, we will derive a contra-

diction. By (2.34) and (2.36) (ii), we have

Qliρ/(3
√

2)(P ) ⊂ Qliρ(P ) ⊂ Qρ(s0, y0).

Hence (2.31) implies

|{u ≥ θi K0

2
}∩Qliρ/(3√2)(P ) |µ ≤

≤ |{u ≥ θi K0

2
} ∩Qρ(s0, y0) |µ ≤ d θ−iε

(
K0

2

)−ε
|Qρ(s0, y0)|.

(2.37)

Consider now the function

v = [θK0 −
u

θi−1
]/[(θ − 1)K0].

We claim that v satisfies the assumptions of Lemma 2.10 on Qliρ/(3
√

2)(P ). Hence,

by (2.31) we conclude that

| { v ≥ K0 } ∩Qliρ/(3√2)(P ) |µ ≤ dK−ε0 |Qliρ/(3√2)(P )|µ.

Since u ≤ θjK0/2 if and only if v ≥ K0, we conclude that

(2.38) | {u ≤ θjK0

2
} ∩Qliρ/(3√2)(P ) |µ ≤ dK−ε0 |Qliρ/(3√2)(P )|µ.

Combining (2.37) and (2.38) we obtain

(2.39) |Qliρ/(3√2)(P )|µ ≤ d θ−iε
(
K0

2

)−ε
|Qρ(s0, y0)|µ + dK−ε0 |Qliρ/(3√2)(P )|µ.

To estimate the ratio

R =
|Qρ(s0, y0)|µ
|Qliρ/(3√2)(P )|µ

from above, we apply formula (2.26) to show the estimate

|Qρ(s0, y0)|µ ≤ [(s0 + ρ)ν − (s0 − ρ)ν ] ρ
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and

|Qliρ/(3√2)(P )|µ ≥ [(s1 +
liρ

3
√

2
)ν − sν1 ]

liρ

3
√

2
≥ ν (s1 +

liρ

3
√

2
)ν−1

(
liρ

3
√

2

)2

when P = (s1, y1). Combining the above we find that

(2.40) R ≤ 1
νρ

[(s0 + ρ)ν − (s0 − ρ)ν ] (s1 +
liρ

3
√

2
)1−ν

(
3
√

2
li

)2

.

When s0 ≤ 2ρ, then (s0 + ρ)ν − (s0 − ρ)ν ≤ (3 ρ)ν and s1 ≤ 9ρ/4 (since P ∈
Q ρ

4
(s0, y0)) in (2.40). Hence

R ≤ 3ν

ν

(
9
4

+
li

3
√

2

)1−ν
(

3
√

2
li

)2

Using the bound li
3
√

2
≤ 3/4 we conclude that

R ≤ 3
ν

(
3
√

2
li

)2

, if s0 ≤ ρ.

On the other hand, when s0 ≥ 2ρ, the estimates

(s0 + ρ)ν − (s0 − ρ)ν ≤ ν ρ (s0 − ρ)ν−1 ≤ ν ρ
(s0

2

)ν−1

and

s1 +
liρ

3
√

2
≤ s0 +

ρ

4
+

liρ

3
√

2
≤ s0 + ρ ≤ 2s0

in (2.40), imply

R ≤ 41−ν

(
3
√

2
li

)2

, if s0 ≥ ρ.

Combining both cases, and using that ν < 1 we finally obtain the bound

R =
|Qρ(s0, y0)|µ
|Qliρ/(3√2)(P )|µ

≤ 4
ν

(
6
li

)2

=
1
ν

(
12
li

)2

which in combination with (2.39) gives

l2i
122
≤ d

ν
θ−iε

(
K0

2

)−ε
+ dK−ε0

l2i
122

Using (2.36)(ii) we conclude

1
2
l2i

122
≤ d

ν
θ−iε

(
K0

2

)−ε
.

The definition of li in the above estimate gives

σ2

2
≤ 122 d 2ε

ν

a contradiction to (2.36)(i).
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It remains to verify that v satisfies the assumptions of Lemma 2.10 on Qρ̃(P ),

with ρ̃ = liρ/(3
√

2). Clearly, the function v satisfies the equation Lv ≤ g̃ on Qρ̃(P ),

with

g̃ = − g

θi−1 (θ − 1)K0
.

In addition v > 0 on Qρ̃(P ), since supQliρ(P ) < θiK0, by assumption. Also, (2.35)

implies that infQρ̃)(P ) ≤ 1. It remains o verify that

ρ̃
1
2 ρ̃ν(s1)

1
2 ‖g̃‖L2(Qρ̃(P ),dµ) ≤ ε0

with ρ̃ν(s1) = (s1 + ρ̃)2−ν − s2−ν
1 . Since

‖g̃‖L2(Qρ̃(P ),dµ) =
1

θi−1 (θ − 1)K0
‖g‖L2(Qρ̃(P ),dµ),

Qρ̃(P ) ⊂ Qρ(s0, y0) and g satisfies (2.27), it is enough to show that

ρ̃
1
2 ρ̃ν(s1)

1
2

θi−1 (θ − 1)K0
≤ ρ 1

2 ρν(s0)
1
2 .

Let us first estimate from above the ratio

η =
ρ̃ν(s1)
ρν(s0)

=
(s1 + ρ̃)2−ν − s2−ν

1

(s0 + ρ)2−ν − s2−ν
0

.

When s0 ≤ ρ/2, then s1 ≤ 3ρ/4. Using also that ρ̃ = liρ/(3
√

2) ≤ 3ρ/4, we obtain

η ≤ (s1 + ρ̃)1−ν ρ̃

ρ2−ν − (ρ2 )2−ν ≤
(2ρ)1−ν liρ

3
√

2

(22−ν − 1) (ρ2 )2−ν ≤
8li

3
√

2
.

When s0 ≥ ρ/2, then s1 + ρ̃ ≤ s0 + ρ ≤ 3 s0 implying the estimate

η ≤ (3s0)1−ν ρ̃

s1−ν
0 ρ

≤ li√
2
≤ 8li

3
√

2
.

In both cases η ≤ 8li/(3
√

2) ≤ 3li. Therefore, if

ζ =
3li

θi−1 (θ − 1)K0
≤ 1

the desired estimate holds. To show the last inequality, let us use that θ > 1,

θ = 2(θ − 1)K0 and li = σK
−ε/2
0 θ−εi/2 to find that

ζ =
6σK−ε/20 θ−εi/2

θi
≤ 6σK−ε/20 .

Hence, ζ ≤ 1, by (2.36)(ii), therefore finishing the proof of the Lemma.

We are now in position to give the proof of Lemma 2.7.

Proof of Lemma 2.7. By the assumptions of Lemma 2.7, and using Lemmas

2.8 and 2.10, one can easily show that u satisfies the hypotheses of Lemma 2.12.
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Since li = σK
−ε/2
0 θ−εi/2, with K0 > 1 and θ > 1, there exists a large integer i0,

depending only on universal constants, such that

(2.41)
∑
i≥i0

li ≤
1
8
.

We claim that

sup
Q ρ

8
(s0,y0)

u ≤ θi0−1K0

therefore finishing the proof of the lemma. To show this claim, we proceed by

contradiction. If the claim is not true, then there exists a point Pi0 with

Pi0 ∈ Q ρ
8
(s0, y0) and u(Pi0) ≥ θi0−1K0.

In particular Pi0 ∈ Q ρ
4
(s0, y0). Hence, by lemma 2.11, there exists a point Pi0+1

such that

Pi0+1 ∈ Qli0ρ(Pi0) and u(Pi0+1) ≥ θi0 K0.

We can repeat this process, to obtain a sequence of points Pi, i ≥ i0, such that

Pi+1 ∈ Qliρ(Pi) and u(Pi+1) ≥ θiK0 ∀i ≥ i0

if we can actually show that each such point Pi satisfies

Pi ∈ Q ρ
4
(s0, y0).

To this end, let Pi = (si, yi). Then, by (2.41) we have

|si − s0| ≤ |si0 − s0|+
i−1∑
k=i0

|sk+1 − sk| ≤
ρ

8
+
∑
k≥i0

lk ρ ≤
ρ

4

and also

γ |yi − y0| ≤ γ|yi0 − y0|+
i−1∑
k=i0

γ |yk+1 − yk| ≤
ρ

8
+
∑
k≥i0

lk ρ ≤
ρ

4

implying that Pi ∈ Q ρ
4
(s0, y0), therefore finishing the proof of Lemma 2.7.

Proof of Theorem 2.6. Let (s̄, ȳ) be a point in Q ρ
2
(s0, y0) and set ρ̃ = ρ/100

so that Q3
√

2ρ̃(s̄, ȳ) ⊂ Qρ(s0, y0). One can easily check that, for any δ > 0, the

function

uδ =

(
inf

Q ρ̃
8

(s̄,ȳ)
u+ δ + ε−1

0 ρ̃
1
2 ρ̃ν(s̄)

1
2 ‖g‖L2(Q3

√
2ρ̃(s̄,ȳ),dµ)

)−1
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satisfies the hypotheses of Lemma 2.7 on Q3
√

2ρ̃(s̄, ȳ). Hence by Lemma 2.7 we

conclude that supQ ρ̃
8

(s̄,ȳ) uδ ≤ C, implying, after letting δ → 0, that

(2.42) sup
Q ρ̃

8
(s̄,ȳ)

u ≤ C

(
inf

Q ρ̃
8

(s̄,ȳ)
u+ ρ̃

1
2 ρ̃(s̄)

1
2 ‖g‖L2(Q3

√
2ρ̃(s̄,ȳ),dµ)

)

for a universal constant C. One can easily show, using the same arguments as in

the proof of Lemma 2.11, that

η =
ρ̃ν(s̄)
ρν(s0)

≤ η0

for some universal constant η0. Hence, (2.25) follows from (2.42) via a standard

covering argument.

We finish this section with two important Theorems (see also [GT] and [CC]).

The first Theorem is a weak Harnack estimate for nonnegative supersolutions u of

equation Lsu ≤ g.

Theorem 2.12. Let u ≥ 0 be a supersolution of equation Lsu ≤ g in Qρ(s0, y0),

where g is a bounded and continuous function on Qρ(s0, y0). Then, there exist

universal constants p0 > 0 and C such that

(2.43)

(
�
∫
Q ρ

4
(s0,y0)

up0 dµ

) 1
p0

≤ C

{
inf

Q ρ
2

(s0,y0)
u+ ρ

1
2 ρν(s0)

1
2 ‖g‖L2(Qρ(s0,y0),dµ)

}

with dµ = sν−1 ds dy and ρν(s0) given by (2.7).

Proof. Let u ≥ 0 be a supersolution of equation Lsu ≤ g in Q3
√

2ρ(s̄, ȳ) such that

infQ 3ρ
2

(s̄,ȳ) u ≤ 1 and ρ
1
2 ρν(s0)

1
2 ‖g‖L2(Q3

√
2ρ(s̄,ȳ),dµ) ≤ ε0, with ε0 as in Lemma 2.8.

Then, by Lemma 2.10, we have

| {u ≥ t } ∩Qρ(s̄, ȳ) |µ ≤ d t−ε |Qρ(s̄, ȳ)|µ

. As a consequence, for p0 = ε
2 , we obtain

∫
Qρ(s̄,ȳ)

up0 dµ = p0

∫ ∞
0

tp0−1 | {u ≥ t } ∩Qρ(s̄, ȳ) |µ

≤ p0

(∫ 1

0

tp0−1 dt+
∫ ∞

1

tp0−1t−ε dt

)
|Qρ(s̄, ȳ)|µ = C(ε) |Qρ(s̄, ȳ)|µ.

(2.44)
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Let (s̄, ȳ) ∈ Q ρ
4
(s0, y0) and ρ̃ = ρ

100 sufficiently small so that Q3
√

2ρ(s̄, ȳ) ⊂
Qρ(s0, y0). Set

uδ = u

(
δ + inf

Q 3ρ̃
2

(s̄,ȳ)
u+ ε−1

0 ρ̃
1
2 ρ̃ν(s0)

1
2 ‖g‖L2(Q3

√
2ρ̃(s̄,ȳ),dµ)

)

so that uδ satisfies all the assumptions of Lemma 2.10 on Q3
√

2ρ̃(s̄, ȳ). Hence

(∫
Qρ(s̄,ȳ)

up0
δ dµ

) 1
p0

≤ C |Qρ(s̄, ȳ)|
1
p0
µ .

The desired inequality (2.43) now follows via a standard covering argument.

The last Theorem in this section is a local maximum principle for subsolutions

u of equation Lsu ≥ g.

Theorem 2.13. Let u be a subsolution of equation Lsu ≥ g in Qρ(s0, y0), where g

is a bounded and continuous function on Qρ. Then, for any p > 0, we have

(2.45)

sup
Q ρ

2
(s0,y0)

u ≤ C(p)


�∫

Q 3ρ
4

(s0,y0)

up dµ

 1
p

+ ρ
1
2 ρν(s0)

1
2 ‖g‖L2(Qρ(s0,y0),dµ)


with dµ = sν−1 ds dy, ρν(s0) given by (2.7), and C(p) a constant depending only

on λ, ν and p.

Proof. Let u be subsolution of equation Lsu ≥ g inQ3
√

2ρ(s̄, ȳ), where ρ
1
2 ρν(s0)

1
2 ‖g‖L2(Q3

√
2ρ(s̄,ȳ),dµ) ≤

ε0, with ε0 as in Lemma 2.8. If, in addition, u+ ∈ Lε(Qρ(s̄, ȳ) with

‖u+‖Lε(Qρ(s̄,ȳ),dµ) ≤ d
1
ε |Qρ(s̄, ȳ)| 1ε

then

| {u ≥ t } ∩Qρ(s̄, ȳ) |µ ≤ t−ε
∫
Qρ(s̄,ȳ)

(u+)ε dµ ≤ d t−ε |Qρ(s̄, ȳ)|µ

. It follows that (2.31) holds for u and hence the proof of Lemma 2.7, which only

uses (2.31), implies that

sup
Q ρ̃

8
(s̄,ȳ)

≤ C.

Rescaling, as in Theorem 2.12 we obtain (2.45) with p = ε. To obtain (2.45) for all

p > 0 we use interpolation.
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2.4. Hölder Continuity. In this section we will present the proof of Theorem 2.2.

First, under the same notation as in the previous section, we will show the following

continuity result:

Lemma 2.14. Let u be a classical solution of equation Lsu = g in Qρ(s0, y0), where

g is a bounded and continuous function. Then, for a universal constant θ < 1, and

a universal constant C, we have

(2.46) osc
Q ρ

2
(s0,y0)

u ≤ θ osc
Qρ(s0,y0)

u+ C ρ
1
2 ρν(s0)

1
2 ‖g‖L2(Qρ(s0,y0),dµ).

Proof. For any r > 0, set mr := infQr(s0,y0) u, Mr := supQr(s0,y0) u and ωr :=

oscQr(s0,y0)u. Applying the Harnack inequality (2.25) to the nonnegative functions

u−mρ and Mρ − u on Qρ(s0, y0) we obtain

M ρ
2
−mρ ≤ C

(
m ρ

2
−mρ + ρ

1
2 ρν(s0)

1
2 ‖g‖L2(Qρ(s0,y0),dµ)

)
and

M ρ
2
−m ρ

2
≤ C

(
Mρ −M ρ

2
+ ρ

1
2 ρν(s0)

1
2 ‖g‖L2(Qρ(s0,y0),dµ)

)
.

Adding both inequalities we get

ω ρ
2

+ ωρ ≤ C
(
ωρ − ω ρ2 + ρ

1
2 ρν(s0)

1
2 ‖g‖L2(Qρ(s0,y0),dµ)

)
which implies that

ω ρ
2
≤ C − 1
C + 1

ωρ +
2C
C + 1

ρ
1
2 ρν(s0)

1
2 ‖g‖L2(Qρ(s0,y0),dµ).

We are now in position to prove our Hölder continuity result. Theorem 2.1 is a

direct consequence of the next Theorem.

Theorem 2.15. Let u be a classical solution of equation (2.24) in Qρ0(s0, y0),

where g is a bounded and continuous function. Then, there exist positive constants

C and α < 1
2 , depending only on λ and ν, such that

(2.47)

osc
Qρ(s0,y0)

u ≤ C ρα
(
ρ−α0 sup

Qρ(s0,y0)

|u|+ ρ
1
2−α
0 (s0 + ρ0)

1
2 ‖g‖L2(Qρ(s0,y0),dµ)

)
.

Proof. Set ω(ρ) = osc
Qρ(s0,y0)

u. By Lemma 2.14 we have

ω(ρ/2) ≤ θ ω(ρ) + k(ρ)

with θ < 1 an absolute constant and

k(ρ) = ρ
1
2 (s0 + ρ0)

1
2 ‖g‖L2(Qρ0 (s0,y0),dµ).
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Both functions ω and k are non-decreasing. Hence, (2.47) follows by Lemma 8.23

in [GT].

3. The Parabolic Case

We will now extend the results of the previous section to the parabolic case. We

will consider degenerate equations of the form

Lu− ut = g

where L is the operator defined given by (1.1) and satisfying conditions (1.9) -

(1.11).

Denoting, for any number ρ > 0 and any point (x0, y0, t0), x0 ≥ 0, by Cρ =

Cρ(x0, y0, t0) the parabolic cube

Cρ = {(x, y, t) : x ≥ 0, |x− x0| ≤ ρ2, |y − y0| ≤ ρ, t0 − ρ2 ≤ t ≤ t0 }

and by µ the measure dµ = x
ν
2−1 dx dy, we will show the following analogue of

Theorem 2.1.

Theorem 3.1. Assume that the coefficients of the operator L are smooth on Cρ,

ρ > 0, and satisfy the bounds (1.9) - (1.11). Then, there exist a number 0 < α < 1

so that, for any r < ρ

‖u‖Cαs (Cr) ≤ C(r, ρ)

(
‖u‖C◦(C1) + (

∫
Cρ
g3(x, t) dµ dt)1/3

)
for all smooth functions u on Cρ for which Lu− ut = g.

The proof of Theorem 3.1 follows the lines of the proof of the corresponding el-

liptic result, Theorem 2.1. We will only present the proof of Alexandroff-Bakelman-

Pucci estimate, Theorems 3.2 and 3.3, and the proof of the existence of the barrier

function, Lemma 3.4, which differs from the elliptic case. The rest of the results

follow from the elliptic analogies in a standard manner, as in [W1], [W2].

3.1. Alexandrov-Bakelman-Pucci Estimate. In this section we will show the

parabolic version of the Alexandrov-Bakelman-Pucci Estimate, following the lines

of the proof elliptic result, Theorem 2.2. The proof of the ABP estimate in the

strictly parabolic case was given by Tso in [T]. As in paragraph 2.1, because of

the degeneracy of the equation, we introduce the new variable z = s2−ν

2−ν , so that
dz
ds = s1−ν . Consider this time the gradient map

(3.1) Z(z, y, t) = (uz, uy, u− (z uz + y uy) )
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so that

(3.2) det
(

∂Z

∂(z, y, t)

)
= ut

[
det
(

∂Z̄

∂(z, y)

)]
, Z̄(z, y) = (uz, uy)

and set

Γ+ =
{

(s, y, t) ∈ Cρ :
∂(uz, uy)
∂(z, y)

≤ 0, uz ≤ 0, ut ≥ 0
}
.

Denoting by Cr(s0, y0, t0) the cube

Cr(s0, y0, t0) = {(s, y) : s ≥ 0, |s− s0| ≤ r, |y − y0| ≤ r, t0 − r2 ≤ t ≤ t0}

for any point (s0, y0, t0) with s0 ≥ 0 and any r > 0, we will show the following para-

bolic analogue of the Alexandrov-Bakel’man-Pucci maximum principle ( Theorems

2.2 and 2.3 of paragraph 2.1).

Theorem 3.2. Let u be a classical solution of equation Lsu − ut = g on Cρ =

Cρ(s0, y0, t0), with coefficients satisfying conditions (2.3) - (2.4). Assume in addi-

tion that u ≤ 0 on { |s− s0| = ρ, |y − y0| = ρ, t− t0 = ρ2 } ∩ Cρ. Then,

sup
Cρ

u+ ≤ C(λ, ν) ρ
2
3 ρν(s0)

1
3

(∫
Γ−

(g−)3(s, y, t) sν−1ds dy dt dt

)1/3

with

(3.3) ρν(s0) = (s0 + ρ)2−ν − s2−ν
0 .

Proof. We will only give an outline of the proof, pointing out the differences from

the elliptic case. Let us suppose that u+ takes a positive maximum

M = max
Cρ

u+

at the point (s, y, ) and let ρν be the distance defined by (3.3) Then

D = [− cM

ρν(s0)
, 0]× [−cM

ρ
,
cM

ρ
]× [−cM

ρ
,
cM

ρ
] ⊂ Z(Γ+)

for some uniform constant c, where Z(Γ+) denotes the image of Γ+ under the

gradient map Z given by (3.1). Hence

(3.4) |D| ≤ |Z(Γ+)| =
∫

Γ+

∣∣∣∣det
(

∂Z

∂(s, y, t)

)∣∣∣∣ ds dy dt.
On the other hand, (3.2) and the computations leading to formula (2.9), imply that

(3.5) |Z(Γ+)| =
∫

Γ+
|ut detE | dµ dt
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with dµ = sν−1 ds dy and

E =

s2(1−ν) uzz s1−ν uzy

s1−ν uzy uyy

 =

uss + (ν−1)us
s usy

usy uyy

 .

Since, ut ≥ 0 and ∂(uz,uy)
∂(z,y) ≤ 0 on Γ+, |ut detE | = ut (−detE). Hence the estimate

3 [ut det(aij) · (−detE) ]
1
3 ≤

(
a11 [uss +

(ν − 1)us
s

] + 2 a12 usy + a22 uyy − ut
)−

implies the bound

3 [ut det(aij) · | detE| ] 1
3 ≤ g− + |b2| |uy|

and by Hölder’s inequality

3 [ut det(aij) · | detE | ] 1
3 ≤ (k3(g−)3 + |b2|3)

1
3 · (k− 3

2 + |uy|
3
2 )

2
3

for all numbers k > 0. Using the bound det(aij) ≥ λ2 we then conclude the estimate

(3.6) (ut |detE |) 1
3 · (k− 3

2 + |uy|
3
2 )−

2
3 ≤ 1

3
λ−1 (k3 (g−)3 + |b2|)

1
3 .

Hence, considering the function G on R3 defined by

G(ξ, ζ, τ) = (k−
3
2 + ξ

3
2 )−2

we have the formula

(3.7)∫
D

G ≤
∫

Γ+
G(Z)

∣∣∣∣det
(

∂Z

∂(s, y, t)

)∣∣∣∣ dsdydt =
∫

Γ+
(k−

3
2 + u

3
2
y )−2 |ut detE| dµdt.

Combining (3.6) and (3.7) and using the bound |b2| ≤ λ−1, we obtain the estimate

(3.8)
∫
D

G ≤ 1
27λ3

∫
Γ+

(k3(g−)3 + λ−3) dµ dt.

To compute the integral
∫
D
G, let us recall that D = [− cM

ρν(s0) , 0] × [− cMρ ,
cM
ρ ] ×

[− cMρ ,
cM
ρ ], so that, similarly to (2.13) we obtain∫
D

G =
c ρ

ρν(s0)

∫
B cM

ρ

(k−
3
2 + ξ

3
2 )−2dξdζdτ

≥ c ρ

ρν(s0)

∫
B cM

ρ

(k−3 + ξ3)−1 dξdζdτ ≥ c ρ

ρν(s0)
log(1 +

c3 k3M3

ρ3
)

(3.9)

From (3.8) and (3.9) we obtain

c ρ

ρν(s0)
log(1 +

c3 k3M2

ρ3
) ≤ 1

27λ3

∫
Γ+

(k3(g−)3 + λ−3) dµ dt.
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Let us set k by k−3 = λ3
∫

Γ+(g−)3 dµ dt to finally conclude (after some calculations)

that
ρ

ρν(s0)
log(1 +

c3 k3M3

ρ3
) ≤ C(λ, ν).

Since α = ρ
ρν(s0) ≥ 1, when s0 < 1 and ρ < 1, the estimate α log(1+x) ≥ log(1+αx)

then implies that

log(1 +
c3k3M3

ρ2 ρν(s0)
) ≤ C(λ, ν).

Exponentiating, we finally conclude the estimate

M ≤ C(λ, ν) ρ
2
3 ρν(s0)

1
3

(∫
Γ+

(g−)3 dµ dt

) 1
3

finishing the proof of the Theorem.

Replacing u by −u in the above Theorem and defining the set

Γ− =
{

(s, y) ∈ Cρ :
∂(uz, uy)
∂(z, y)

≥ 0, uz ≥ 0, ut ≥ 0
}

we obtain:

Theorem 3.3. Let u be a classical solution of equation

Ls := a11 uss + 2a12 usy + a22 uyy +
a11

s
[
b1

2 a11
− 1]us + b2 uy = g

on Cρ = Cρ(s0, y0), with coefficients satisfying conditions (2.3) - (2.4). Assume in

addition that u ≥ 0 on { |s− s0| = ρ, |y − y0| = ρ, t− t0 = ρ2 } ∩ Cρ. Then,

sup
Cρ

u− ≤ C(λ, ν) ρ
2
3 ρν(s0)

1
3

(∫
Γ−

(g+)3(s, y, t) sν−1ds dy dt

)1/3

with ρν(s0) given by (3.3).

3.2. The Barrier Function. As in the elliptic case, for the proof of the Harnack

estimate will need to construct a barrier function, similar to the barrier function

introduced by Wang in [W1]. To simplify the computations in this paragraph we

will go back to the original (x, y, t) variables, assuming that L satisfies conditions

(1.9) and (1.11). Similarly to paragraph 2.2, for any two points (x, y) and (x0, y0)

in R2
+, we introduce the distance function dγ defined by

(3.10) d2
γ((x, y), (x0, y0)) = (

√
x−
√
x0)2 + γ2(y − y0)2

with γ > 0 a sufficiently small constant depending on λ, ν, to be determined in the

sequel. Recall that 0 < λ, ν < 1 the positive constant so that (1.11) holds. Notice
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that in the (s, y) variables, with s =
√
x the distance function d2

γ can be expressed

as

d2
γ((s, y), (s0, y0)) = (s− s0)2 + γ2 (y − y0)2.

For r > 0, let Qr(x0, y0, t0) denote the cube

Qr(x0, y0, t0) = { (x, y) : x ≥ 0, |
√
x−
√
x0| ≤ r, γ |y − y0| ≤ r, t0 − r2 ≤ t ≤ t0 }.

Also let us denote by Br(x0, y0) the ball

Br(x0, y0) = { (x, y) : x ≥ 0, dγ((x, y), (x0, y0)) ≤ r }

and by Kr(x0, t0, y0) the parabolic cylinder

Kr(x0, t0, y0) = Br(x0, y0)× (t0 − r2, t0].

We will show the following analogue of Lemma 2.2 in [W1].

Lemma 3.4. For any point (x0, y0) ∈ R2 with 0 ≤ x0 ≤ 1 and any number

0 < ρ ≤ 1 let us set K3
√

2ρ = B3
√

2ρ(x0, y0) × (0, 18ρ2), Q1
ρ
2

= Q ρ
2
(x0, y0,

ρ2

4 ) and

Q2
3ρ
2

= Q 3ρ
2

(x0, y0,
10ρ2

4 ). Then, there exists a function φρ on K3
√

2ρ, such that

(3.11)

φρ ≥ 1 in Q2
3ρ
2

φρ ≤ 0 on ∂pK3
√

2ρ

and

(3.12) Lφρ − (φρ)t ≥ 0 on K3
√

2ρ \Q
1
ρ
2
.

Moreover, we have

‖φρ‖C1,1(K3
√

2ρ) ≤
C(λ, ν)
ρ2

.

Proof. This Lemma is the parabolic analogue of Lemma 2.5. As in the elliptic

case, we will first show the Lemma in the case that ρ = 1. The general case will

follow by an appropriate dilation. Similarly to Lemma 2.4 we introduce the new

distance function

d̄2
γ =

(x− x0)2

x+ x0
+ γ2 (y − y0)2.

which is equivalent to dγ since

(3.13) dγ ≤ d̄ ≤
√

2 dγ .

Let us consider the function

ω(x, y, t) = [18− d̄2((x, y), (x0, y0))] Λ(x, y, t)
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with

Λ(x, y, t) =
1

4πt
e−

d̄2((x,y),(x0,y0))
t .

For numbers 0 < τ0 < 1, m > 1 and l > 1, to be determined in the sequel, set

u(x, y, t) = e−mt ωl(x, y, t+ τ0)−M(τ0)

with

M(τ0) = sup{ωl(x, y, τ0) : d̄((x, y), (x0, y0)) ≥ 1
2
}.

Then, it follows by (3.13) that u ≤ 0 on ∂pK3
√

2 \Q1
1
2
. Moreover, we can choose τ0

sufficiently close to zero, depending only on γ, such that we still have u > 0 on Q2
3
2
.

To simplify the notation let us set θ(x, y) = d̄2((x, y), (x0, y0)), so that

ω = (18− θ) Λ and Λ =
1

4πt
e−

θ
t .

Also, let us set

Lu := ut − Lu = ut − (ãij uij + bi ui)

with ã11 ã12

ã21 ã22

 =

 x a11
√
x a12

√
x a21 a22

 .

A direct computation shows that

Lu = e−mt ωl−2 { l [ω (ωt − ãij ωij − bi ωi)− (l − 1) ãijωi ωj ]−mω2}

with

ωi = −[
1

t+ τ0
(18− θ) + 1] Λ θi and ωt = (18− θ) Λ [

θ

(t+ τ0)2
− 1
t+ τ0

]

and

ωij = −[
1

t+ τ0
(18− θ) + 1] Λ θij +

1
t+ τ0

[
1

t+ τ0
(18− θ) + 2] Λ θi θj .

Combining the above we find that

Lu = l e−mtωl−2Λ2

{
(18− θ)2

[
θ

(t+ τ0)2
− 1
t+ τ0

+
1

t+ τ0
ãij θij

− 1
(t+ τ0)2

ãij θi θj +
1

t+ τ0
bi θi −

m

l

]
+ (18− θ)

[
ãij

(
θij −

2
t+ τ0

θi θj

)
+ bi θi

]
−(l − 1) ãij

[
1 +

1
t+ τ0

(18− θ)
]2

θi θj

}
.

(3.14)
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Hence, using that l > 1, we obtain

Lu ≤ l e−mt ωl−2 Λ2 [ (18− θ)2 I + (18− θ) II]

with

I =
θ

(t+ τ0)2
− 1
t+ τ0

+
1

t+ τ0
ãij θij −

1
(t+ τ0)2

ãij θi θj +
1

t+ τ0
bi θi −

m

l

and

II = ãij θij − 2 (l + 1) ãij
1

t+ τ0
θi θj + biθi.

By assumptions (1.9) and (1.11) we have

ãij θij ≤ λ−1 [x θxx + θyy ]

and

ãij θi θj ≥ λ [x θ2
x + θ2

y ]

while

|bi| ≤ λ and b1 ≥
νλ

2
.

Also, by direct computation

θx =
(x+ 3x0)(x− x0)

(x+ x0)2
and θxx =

8x2
0

(x+ x0)3

while

θy = 2 γ2(y − y0) and θyy = 2γ2

and θxy = 0. In particular one can observe that

|θ|, |θx|, |θy|, |x θxx|, |θyy| ≤ C(γ) on K3
√

2(P0)

when x0, |y0| ≤ 1. Therefore, the term I can be easily estimated as

I ≤ C(γ, λ, ν)
τ2
0

− m

l
≤ −m

2l

for m
l sufficiently large, depending only on γ, λ and ν (since τ0 depends only on γ).

The term II can be estimated as

II ≤ λ−1 [x θxx + θyy + |θy|+ θ+
x ]− νλ

2
θ−x − c(γ, λ) (l + 1)[x θ2

x + θ2
y ]

where θij and θi are given above. When dγ((x, y), (x0, y0)) ≥ 1
4 , then one may

the same arguments as in the proof of lemma 2.4 to deduce that II ≤ 0, when

γ = γ(λ, ν) and l = l(λ, ν) are chosen sufficiently large. In the case where

dγ((x, y), (x0, y0)) < 1
4 we have (18− θ) ≥ c(ν, λ) > 0 and hence

II ≤ C(ν, λ) ≤ C(ν, λ) (18− θ)
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so that we still have

(18− θ)2 I + (18− θ) II ≤ (18− θ)2 [−m
2l

+ C(ν, λ) ] ≤ 0

by choosing m sufficiently large.

Summarizing the above, we have constructed a function u satisfying Lu ≤ 0 in

K3
√

2 and also such that u ≤ 0 on ∂pK3
√

2 \Q1
1
2
u > c(ν, λ) > 0 on Q2

3
2
. Moreover,

it is easy to observe that

(3.15) ‖u‖C1,1 ≤ C(ν, λ).

We can modify u in such a way that (3.15) still holds, Lu ≤ 0 on K3
√

2 \Q1
1
2
, u ≤ 0

at ∂K3
√

2 and u > 0 in Q2
3
2
. Finally, setting

φ =
u

infQ2
3
2

u

so that φ ≥ 1 in Q2
3
2
, we conclude that φ is the desired barrier function.

We have constructed above the barrier function φ = φ̄(d̄, t) on K3
√

2. To con-

struct the barrier function φρ on K3
√

2ρ, for any 0 < ρ < 1, we set

φρ = φ̄ρ(d̄, t) = φ̄(
d̄

ρ
,
t

ρ2
).

Clearly

Lφρ − (φρ)t =
1
ρ2

(Lφ− φt) ≥ 0, on K3
√

2ρ \Q
1
ρ
2

and it also satisfies (3.11). Moreover, we have

‖φρ‖C1,1(K3
√

2ρ) =
1
ρ2
‖φ‖C1,1(K3

√
2) ≤

C(ν, λ)
ρ2

concluding that φρ satisfies all the required conditions.

3.3. The Harnack Inequality. Fix a point (x0, y0, t0) with x0 ≥ 0, and set

s0 =
√
x0. Let us now go back to the (s, y) variables ( with s =

√
x) assuming,

throughout this section, that u is a solution of the equation

(3.16) Lsu := a11 uss + 2a12 usy + a22 uyy +
a11

s
[
b1

2 a11
− 1]us + b2 uy − ut = g

with Ls satisfying conditions (2.3) and (2.4). Denoting, for any r > 0, byQr(s0, y0, t0)

the cube

Qr(s0, y0, t0) = { (s, y) : s ≥ 0, |s− s0| ≤ r, γ |y − y0| ≤ r t0 − r ≤ t ≤ t0}

we have the following Harnack inequality for solutions to (3.16).



HÖLDER REGULARITY OF SOLUTIONS TO DEGENERATEELLIPTIC AND PARABOLIC EQUATIONS33

Theorem 3.5. Let u ≥ 0 be a classical solution of equation (3.16) in Qρ(s0, y0, t0),

where g is a bounded and continuous function on Qρ(s0, y0, t0). Then,

(3.17) sup
Q ρ

2
(s0,y0,t0− 3ρ2

4 )

u ≤ C

(
inf

Q ρ
2

(s0,y0,t0)
u+ ρ

3
2 ρν(s0)

1
2 ‖g‖L3(Qρ(s0,y0,t0),dµ)

)

with dµ = sν−1 ds dy dt and ρν(s0) given by (3.3).

The proof of Theorem 3.5, based upon the A-B-P estimate, Theorem 3.3, and

the barrier function given in Lemma 3.4, follows along the lines of the proof of the

corresponding elliptic Theorem 2.6. One may now follow the proof of Theorem 2.1,

with the standard adaptations to the parabolic case to show Theorem 3.1.

We finish by stating the parabolic analogies of the weak Harnack estimate, The-

orem 2.12 and the local maximum principle Theorem 2.13.

To simplify the notation, let us set, for any r > 0, Qr := Qr(s0, y0, t0) and

Q−r := Qr(s0, y0, t0 − 3ρ2

4 ) .

The first Theorem is a weak Harnack estimate for nonnegative supersolutions u

of equation Lsu ≤ g.

Theorem 3.6. Let u ≥ 0 be a supersolution of equation Lsu ≤ g in Qρ :=

Qρ(s0, y0, t0), where g is a bounded and continuous function on Qρ. Then, there

exist universal constants p0 > 0 and C such that

(3.18)

�∫
Q−ρ

4

up0 dµ

 1
p0

≤ C

(
inf
Q ρ

2

u+ ρ
1
2 ρν(s0)

1
2 ‖g‖L2(Qρ,dµ)

)

with dµ = sν−1 ds dy dt and ρν(s0) given by (3.3).

The last Theorem in this section is a local maximum principle for subsolutions

u of equation Lsu ≥ g.

Theorem 3.7. Let u be a subsolution of equation Lsu ≥ g in Qρ := Qρ(s0, y0, t0),

where g is a bounded and continuous function on Qρ. Then, for any p > 0, we have

(3.19) sup
Q ρ

2

u ≤ C(p)


�∫

Q 3ρ
4

up dµ

 1
p

+ ρ
1
2 ρν(s0)

1
2 ‖g‖L3(Qρ,dµ)


with dµ = sν−1 ds dy dt, ρν(s0) given by (3.3), and C(p) a constant depending only

on λ, ν and p.
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